Long module skew codes are good

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long module skew codes are good

Module skew codes are one sidedmodules for (a quotient of) a skewpolynomial ringwhere multiplication is twisted by an automorphism of the Galois group of the alphabet field. We prove that long module skew codes over a fixed finite field are asymptotically good by using a non-constructive counting argument. We show that for fixed alphabet size, and automorphism order and large length their asymp...

متن کامل

Long cyclic codes are good

Long quasi-cyclic codes of any fixed index > 1 have been shown to be asymptotically good, depending on Artin primitive root conjecture in (A. Alahmadi, C. Güneri, H. Shoaib, P. Solé, 2017). We use this recent result to construct good long additive cyclic codes on any extension of fixed degree of the base field. Similarly selfdual double circulant codes, and self-dual four circulant codes, have ...

متن کامل

A Note on the Dual Codes of Module Skew Codes

In [4], starting from an automorphism θ of a finite field Fq and a skew polynomial ring R = Fq[X; θ], module θ-codes are defined as left R-submodules of R/Rf where f ∈ R. In [4] it is conjectured that an Euclidean self-dual module θ-code is a θ-constacyclic code and a proof is given in the special case when the order of θ divides the length of the code. In this paper we prove that this conjectu...

متن کامل

Regular Codes Are Not Asymptotically Good

In this note, we prove that the family of regular codes is not asymptotically good. The notation follows that in [2]. All codes considered are binary linear codes. H7 refers to the [7, 4] binary Hamming code. Definition 1. A binary linear code is regular iff it does not contain as a minor any code equivalent to H7 or H 7 . It follows from the theorem that the family of regular codes, which we w...

متن کامل

Skew Generalized Quasi-cyclic Codes

This article discusses skew generalized quasi-cyclic codes over any finite field F with Galois automorphism θ. This is a generalization of quasi-cyclic codes and skew polynomial codes. These codes have an added advantage over quasi-cyclic codes since their lengths do not have to be multiples of the index. After a brief description of the skew polynomial ring F[x; θ], we show that a skew general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2016

ISSN: 0012-365X

DOI: 10.1016/j.disc.2016.01.008